Nitrogen Fixation

PG Third Semester

Bioinorganic Chemistry-V

Lecture 11 & 12

Bapan Saha Assistant Professor, Chemistry Handique Girls' College Guwahati-01

Contents

- Nitrogen Fixation
- Structure of nitrogenase
- ➢ Its role in di-nitrogen fixation

Books/References used and suggested

- Bioinorganic Chemistry by Bertini, Gray, Lippard and Valentine
- Inorganic Biochemistry by Cowan
- Bioinorganic Chemistry by A. K. Das
- Oxford Chemistry Primer by Fenton

Nitrogen Fixation

- > A key reaction of biological system, converts atmospheric dinitrogen (N_2) to other N-containing species (nitrate/nitrite/other essential compounds)
- ➢ Fixed nitrogen is essential for the synthesis of amino acids and nucleic acid.
- > Natural systems cannot provide adequate amount of fixed nitrogen for agriculture and animal husbandry.
- ➤ Industrial processes have been developed to fix nitrogen chemically.

Plant Fixing Nitrogen

Pulse crop Braithamoortantodules

Haber-Bosch Process

- Dinitrogen is almost chemically inert (bond energy 945 kjmol⁻¹) and activation energy is prohibitively high (kinetically unfavourable).
- > Breaking and reducing $N \equiv N$ triple bond is a challenging task.
- ➢ Requires about 300-500 °C and 300 atmospheric pressure with Haber's catalyst, usually metallic Fe or its oxide (thermodynamically favourable).

$$N_2 + 3H_2 \rightarrow 2NH_3 \quad \Delta H = -50 \text{ kjmol}^{-1}, \quad \Delta G = -16.6 \text{ kjmol}^{-1}$$

> At pH=7, E° value is easily accessible to biological reductant such as low potential ferredoxins

$$N_2 + 8e^- + 6H^+ \rightarrow 2NH_4^+ E^\circ = -280 \text{ mV}$$

Biological nitrogen fixation

- > Nitrogen fixation with the help of microorganisms (nitrogen fixing bacteria).
- > Two types symbiotic and non symbiotic
- Non symbiotic Fixation by free living organisms (aerobic, anaerobic and blue green algae)

Free living aerobic : Azotobacter vinelandii

Free living anaerobic : *Clostridium pasteurianum*

Facultative aerobes: Klebsiella pneumoniae

Free living photosynthetic: Rhodobacter capsulatus - purple,

Blue green algae: Anabaena cylindrica (cyanobacterium)

Symbiotic - Fixation by microorganisms in soil living symbiotically inside the plants.

Nodule formation in leguminous plants: *Rhizobium* and *Bradyrhizobium*

Nodule formation in non-leguminous plants: Frankia

Non nodulation : Anabaena azollae

Bapan Draft

Symbiotic Nitrogen Fixation

- Rhizobium (gram negative, aerobic) is present in nodules on the roots of legumes (peas, beans, clover, alfalfa and soya)
- \blacktriangleright Red colour inside the nodules is due to leghaemoglobin (a plant O₂-binding protein)
- > The reaction takes place at 0.8 atmospheric pressure and ambient temperature.
- ➤ Intensive efforts have been made to determine the bacterial mechanism.
- > The nitrogen fixing bacteria contains an enzyme called nitrogenase.
- ▷ Nitrogenase catalyses the reduction of N_2 to NH_3 in a reaction coupled to the hydrolysis of 16 ATP molecules and production of H_2 .

 $N_2 + 16MgATP^{2-} + 8e^- + 8H^+ \rightarrow 2NH_3 + 16MgADP^- + 16H_2PO_4^- + H_2$

- \succ Fe-Mo nitrogenase is mostly studied reduction of N₂ probably occurs at Mo-site
- Fe-V nitrogenase V plays (other metal can also) the role of Mo
- Fe-Fe nitrogenase similar metals can also effect fixation Bapan Draft

Biochemistry of nitrogen fixation

Basic requirements

- Nitrogenase and hydrogenase enzyme
- Protective mechanism against Oxygen (leghaemoglobin binds oxygen tightly and protects nitrogenase that cannot operate in presence of oxygen.)
- > Ferredoxin
- Hydrogen releasing systems or electron donor (pyruvic acid or glucose/sucrose
- Constant supply of ATP
- ➢ Coenzymes and cofactors TPP, CoA, inorganic phosphate and Mg²⁺

Nitrogenase enzyme

- Active in anaerobic condition
- Consists of two protein subunits

Non heme Fe-protein : P clusters (dinitrogen reductase, smaller)

Fe-Mo protein : Di-nitrogenase (larger)

 \blacktriangleright Fe-protein reacts with ATP and reduces second subunit which ultimately reduces N₂ to NH₃,

 $N_2 + 6e^- + 6H^+ \rightarrow 2NH_3$

- Earger protein is an $\alpha_2\beta_2$ tetramer with molecular weight 220,000-240,000 D. Contains 2-Mo atoms, almost 30-Fe atoms and about 30-labile (inorganic) sulphur atoms.
- > P-cluster has the molecular weight of 57,000-73,000 D with an Fe_4S_4 cluster (dimer of two identical subunits bridged by an Fe_4S_4 cluster). It acts as a redox centre.

Fe-Mo nitrogenase

- > The protein free cofactor is soluble and contains Mo and Fe (1 Mo, 7-8 Fe and 4-6 S^{2-} ions)
- Recombination of the cofactor with inactive nitrogenase restores the activity.
- ► Reaction: $N_2 + 16MgATP^{2-} + 8e^{-} + 8H^{+} \rightarrow 2NH_3 + 16MgADP^{-} + 16PO_4^{3-} + H_2$
- > Electrons required for the reaction are transferred to nitrogenase by reduced form of ferredoxins and flavodoxins.
- \blacktriangleright The source of these electrons is the oxidation of pyruvate (2-oxo-propionate).
- > The e⁻s first transferred to the Fe-protein, the reduced form of which forms a complex with Mg-ATP and Fe-Mo-protein.
- > The reducing e^- is transferred to Fe-Mo-protein and then to N_2 in a series of steps accompanied by H⁺ transfer from H₂O

to N₂ produces NH₃, Mg-ADP and i-PO₄³⁻.

Regeneration of proteins.

> The energy released from hydrolysis of ATP drives the reaction.

ATP \rightarrow ADP + PO₄³⁻ $\Delta G = -30.5 \text{ kjmol}^{-1}$

- \blacktriangleright Fe-Mo protein contains the site of N₂ binding (Fe-Mo cofactor) where the N₂ is reduced.
- \blacktriangleright P cluster is believed to assist the reduction of N₂ by transfer of electrons.

 $N_2 + 16MgATP^{2-} + 8e^- + 8H^+ \rightarrow 2NH_3 + 16MgADP^- + 16PO_4^{3-} + H_2$

Fe protein

Fe-Mo-protein

- ➤ Two Fe-Mo cofactors are located at about 70 Å apart.
- > It is an $\alpha_2\beta_2$ tetramer with molecular weight of 220000-240000 D (2Mo, 30Fe & 30 labile S²⁻)
- \succ Consists of cuboidal [Fe₄S₄] and [Fe₃MoS₃] fragments linked by two sulphide bridges
- ➤ A third bridge might be derived from O or N donor.
- > The cluster is bound to the protein via a cysteine at Fe and a histidine at the Mo.
- > The coordination sphere of the six coordinated Mo (probably in IV OS) is completed by the homocitrate anion.

P-cluster

- ▶ It is smaller protein with molecular weight 57000-73000 D
- \triangleright Contains a pair of [Fe₄S₄] units linked by two bridging cysteine thiolate group
- > A disulphide bridge formed between S atoms of each $[Fe_4S_4]$ cubane cluster.
- \blacktriangleright Unusual, EPR studies suggests its oxidized form to be high spin with S=7/2 and Mossbauer spectra reveals inequivalent

Fe-population indicating $[Fe_4S_4]$ cluster to be distorted or asymmetric.

Mechanism of nitrogen fixation

- > The active site for dinitrogen binding involves Mo atom.
- The coordination sphere consists of several S-atoms at distances of about 2.35 Å
- The source of reductive capacity is pyruvate, and e^{-s} are transferred via ferredoxin to nitrogenase
- Two Mo(III) atoms cycling through Mo(VI) would provide six electrons required for the reduction.
- Alternatively, there should be ready flow of electrons, and the Mo may stay in the one or two oxidation states that most readily bind dinitrogen

and its intermediate reductants.

Schematic diagram of nitrogenase activity in bacterial cell

Steps of conversion of atmospheric nitrogen to ammonia by nitrogenase enzyme complex found found in nitrogen - fixing bacteria